COSINE HIGHER-ORDER EULER NUMBER CONGRUENCES AND DIRICHLET <i>L</i>-FUNCTION VALUES

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruences and Exponential Sums with the Euler Function

where gcd(a, p) = 1, and N is sufficiently large. Our bounds are nontrivial for a wide range of values of p, starting with p ≥ logN . We remark that although it might be possible to improve on this power of logN , for very small values of p relative to N , it is simply not possible to obtain nontrivial bounds. In fact, it has been shown in Theorem 3.5 of [5] that for any prime number p of size ...

متن کامل

Dirichlet and Neumann Boundary Values of Solutions to Higher Order Elliptic Equations

We show that if u is a solution to a linear elliptic differential equation of order 2m ≥ 2 in the half-space with t-independent coefficients, and if u satisfies certain area integral estimates, then the Dirichlet and Neumann boundary values of u exist and lie in a Lebesgue space Lp(Rn) or Sobolev space Ẇ p ±1(R n). Even in the case where u is a solution to a second order equation, our results a...

متن کامل

Congruences and Recurrences for Bernoulli Numbers of Higher Order

In particular, B^\0) = B^\ the Bernoulli number of order k, and BJp = Bn, the ordinary Bernoulli number. Note also that B^ = 0 for n > 0. The polynomials B^\z) and the numbers B^ were first defined and studied by Niels Norlund in the 1920s; later they were the subject of many papers by L. Carlitz and others. For the past twenty-five years not much has been done with them, although recently the ...

متن کامل

Some Congruences Involving Euler Numbers

In this paper, we obtain some explicit congruences for Euler numbers modulo an odd prime power in an elementary way.

متن کامل

Congruences involving Bernoulli and Euler numbers

Let [x] be the integral part of x. Let p > 5 be a prime. In the paper we mainly determine P[p/4] x=1 1 xk (mod p2), p−1 [p/4] (mod p3), Pp−1 k=1 2 k (mod p3) and Pp−1 k=1 2 k2 (mod p2) in terms of Euler and Bernoulli numbers. For example, we have

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyushu Journal of Mathematics

سال: 2017

ISSN: 1340-6116,1883-2032

DOI: 10.2206/kyushujm.71.197